

AAAI 2025 Tutorial T04 Time: 2025-02-25 8:30-12:30 Location: 118A Pennsylvania Convention Center

Foundation Models Meet Embodied Agents

Manling Li Northwestern

Yunzhu Li Columbia

Jiayuan Mao MIT

Wenlong Huang Stanford

Northwestern University

COLUMBIA

AAAI 2025 Tutorial T04 Time: 2025-02-25 8:30-12:30 Location: 118A Pennsylvania Convention Center

Part II: Foundation Models meet Virtual Agents

Manling Li, Assistant Professor at Northwestern University

Northwestern University

COLUMBIA

Let us go back to MDPs (Markov Decision Processes)

MDP Environment: Embodied Simulator

6

Simulator	Year	Physics Engine	Applications
Isaac Sim	2023	PhysX	Navigation, Autonomous Driving
Isaac Gym	2019	PhysX	Reinforcement Learning, Large-Scale Parallel Simulation
Unity ML-Agents	2017	Custom	Reinforcement Learning, Robotics Simulation
AirSim	2017	Custom	Drone Simulation, Autonomous Driving, Reinforcement Learning
PyBullet	2017	Bullet	Reinforcement Learning, Robotics Simulation
MORSE	2015	Bullet	Navigation, Multi-Robot
V-REP (CoppeliaSim)	2013	Bullet/ODE/Vortex/Newton	Multi-Robot, Robotics Simulation
MuJoCo	2012	Custom	Reinforcement Learning, Robotics Simulation
Gazebo	2004	ODE/Bullet/Simbody/DART	Navigation, Multi-Robot
Webots	1996	ODE	Robotics Simulation

Real-Scene Based Simulators

Simulator	Year	Scenes	Modalities
iGibson	2021	15	RGB-D, LiDAR, Learning
SAPIEN	2020	46	RGB-D, Joint Object Interaction
Habitat	2019	1000	RGB-D, Supports Multi-Agent
Matterport 3D	2018	90	RGB-D, Navigation Benchmark
Virtual Home	2018	50	RGB-D, Environment Graph
AI2-THOR ALFRED	2017	120	RGB-D, Supports Multi-Agent

MDP Environment: Embodied Simulator

Automated Scene Construction

a spa with large hot tubs

RoboGen

(Luo et al. 2023)

HOLODECK (Kapelyukh et al. 2018)

PhyScene (Yang et al. 2024)

ProcTHOR (Yang et al. 2022)

Further enhance these env by generating high-quality 3D scenes, facilitating diverse training scenarios

Real-Scene Based Simulators						
Simulator	Year	Scenes	Modalities			
iGibson	2021	15	RGB-D, LiDAR, Learning			
SAPIEN	2020	46	RGB-D, Joint Object Interaction			
Habitat	2019	1000	RGB-D, Supports Multi-Agent			
Matterport 3D	2018	90	RGB-D, Navigation Benchmark			
Virtual Home	2018	50	RGB-D, Environment Graph			
AI2-THOR	2017	120	RGB-D, Supports Multi-Agent			

What is a typical dataset?

Existing Data & Annotations

Additional Human Annotations

Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making

https://arxiv.org/abs/2410.07166

Let us go back to MDPs (Markov Decision Processes)

Perception / State Estimation

 $o \rightarrow s$

A large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes

Embodied QA

EQA: Embodied Question Answering

EmbodiedQA (Das et al., 2018)

Interactive QA (Gordon et al., 2018)

Visual Navigation (Zhu et al., 2017, Gupta et al., 2017)

Leave the bedroom, and enter the kitchen. Walk forward, and take a left at the couch. Stop in front of the window.

Vision-Language Navigation (Anderson et al., 2018)

☐ Two types of perception abilities:

RGB Perception

Point Cloud Perception

https://embodiedga.org/slides/ega matterport.slides.pdf

Q: What color is the counter in the hallway?

☐ Two types of perception abilities:

RGB Perception

Point Cloud Perception

https://embodiedga.org/slides/ega matterport.slides.pdf

Agent Perception / State Estimation

Vision

Extension to Real-World: OpenEQA

Collision Rate (\downarrow better) View Quality (↑ better)

New Eval Trend: Now Foundation Models are Scorers

Let us go back to MDPs (Markov Decision Processes)

Let us go back to MDPs (Markov Decision Processes)

Goal Interpretation 8

Multimodal Theory of Mind

VIDEO INPUT

TEXT INPUT

What's inside the apartment: ... The kitchen is equipped with a microwave, eight cabinets, ... Inside the microwave, there is a cupcake. There is a wine glass and an apple on one of the kitchen tables. There are water glasses, a bottle wine, a condiment bottle, and a bag of chips in inside the cabinets. ...

Actions taken by Emily: Emily is initially in the bathroom. She then walks to the kitchen, goes to the sixth cabinet, opens it, subsequently closes it, and then goes towards the fourth cabinet.

QUESTION

Which one of the following statements is more likely to be true?

(a) Emily has been trying to get a cupcake.

(b) Emily has been trying to get a wine glass. X

Type 1.1: True belief, short-term

- Scene: ... Inside the bridge, you'll find a bottle of wine...
- Actions: ... Finally, she moves towards the fridge, preparing to open it.
- Question: If Elizabeth has been trying to get a bottle of wine, which one of the following statements is more likely to be true? (a) Elizabeth thinks that there is a bottle of
- wine inside the fridge. (b) Elizabeth thinks that there isn't any bottle of
- wine inside the fridge.

Type 2.1: Goal given true belief

- Scene: ... The living room is furnished with a cabinet, ... The cabinet is filled with two apples, ..., and a bottle of wine. ... Inside the fridge, there are two apples.
- Actions: James... then opens the fridge, G closes it... Finally, he walks towards the living 0 room and approaches the cabinet.

Question: Which one of the following statements is more likely to be true? (a) James has been trying to get a bottle of wine.

(b) James has been trying to get an apple.

Type 1.2: False belief, short-term

Scene: ... The living room features a cabinet... The cabinet is filled with a bag of chips, a remote controller, a bottle of wine, and a water glass.

Actions: Jennifer is situated in the living room. She heads towards the cabinet and is about to open it.

Question: If Jennifer has been trying to get a cupcake, which one of the following statements is more likely to be true? (a) Jennifer thinks that there isn't a cupcake inside the cabinet. (b) Jennifer thinks that there is a cupcake inside the cabinet.

Type 2.2: Goal given false belief

Scene: ... There is a water glass inside the seventh cabinet... The fridge stores two cupcakes...

Actions: Mark... advances towards the seventh kitchen cabinet.

Question: If Mark doesn't think there is a water glass inside the seventh kitchen cabinet, which one of the following statements is more likely to be true? (a) Mark has been trying to get a water glass.

(b) Mark has been trying to get a cupcake.

https://arxiv.org/pdf/2401.08743

Type 1.3: Belief tracking, long-term

Scene: ... The kitchen is equipped with a fridge, sofa, dishwasher, eight cabinets, a stove, a microwave, and a kitchen table ... Actions: ... He walks to the seventh kitchen cabinet, opens and closes it. He repeats the same action with the sixth kitchen cabinet. Subsequently, he moves towards the dishwasher.

Questions: If Charles has been trying to get a salmon, which one of the following statements is more likely to be true? (a) Charles thinks that there is a salmon inside the fridge. (b) Charles thinks that there isn't any salmon inside the fridge.

Scene: ... The first cabinet, from left to right, contains a bag of chips. Actions: Mary... walks towards the first kitchen cabinet, opens it, and then closes it.

Question: Which one of the following statements is more likely to be true? (a) Mary has been trying to get a bag of chips. (b) Mark has been trying to get a condiment bottle.

Type 2.3: Goal given updated belief Type 2.4: Goal given future actions

Scene: ... The dishwasher holds a dish bowl ... The first cabinet from the left holds a bag of chips and a wine glass... The fifth cabinet has an apple...

Actions: Williams... advances towards the first kitchen cabinet, opens it, and then shuts it. He then moves towards the fifth kitchen cabinet.

Question: Which one of the following statements is more likely to be true? (a) William has been trying to get a wine glass.

(b) William has been trying to get a dish bowl.

Goal

Belief

Inference

elief

m

Inference

C

Learn to predict plausibly useful goals in a task-agnostic way

 $R_{\text{int}} = \max\left(\Delta(C_{\text{transition}}(o_t, a_t, o_{t+1}), g_t^i\right), i \in [1 \dots k].$

Let us go back to MDPs (Markov Decision Processes)

Policy $\pi(o,g) \to a$

LLMs as the Planner

Zero-Shot Planning via Causal LLM

Translation to Admissible Action

Task: Shave Step 1: Grab razor Step 2: Wash razor Step 3: Switch on razor Task: Apply lotion Step 1: Pour lotion into right hand Step 2: Frozen Pre-Trained Causal LLM

Step-By-Step Autoregressive Generation

The key is <Free-Form Language Action, Admissible Action>

LLMs as the Planner

Zero-Shot Planning via Causal LLM

Translation to Admissible Action

Step-By-Step **Autoregressive Generation**

Prompt

Frozen

First Work: Language Models as Zero-Shot Planners

Another way of mapping <Free-Form Language Action, Admissible Action>

Another way: Retrieval Based

Learn the Skill Library (Admissible Action)

Focuses on agent policies for exploration and skill acquisition in Minecraft

Environment

nttps://arxiv.org/pdf/2305.16291

Focuses on agent policies for exploration and skill acquisition in Minecraft

Automatic Curriculum

Focuses on agent policies for exploration and skill acquisition in Minecraft

Focuses on agent policies for exploration and skill acquisition in Minecraft

Focuses on agent policies for exploration and skill acquisition in Minecraft

Step 1: Propose tasks by the automatic curriculum

Reasoning: Since you have a wooden pickaxe and some stones, it would be beneficial to upgrade your pickaxe to a stone pickaxe for better efficiency. **Task**: Craft 1 stone pickaxe.

Reasoning: Since you have a fishing rod in your inventory and you are near a river biome, it would be a good opportunity to catch some fish for food and experience. **Task**: Catch 1 fish.

Reasoning: Your hunger is at 0, which means you need to find food to replenish your hunger. Since there are pigs nearby, you can kill one to obtain raw porkchops. **Task**: Kill 1 pig.

Reasoning: You have raw iron and coal, and you have a furnace. It's time to smelt the iron to make iron ingots, which can be used to craft better tools and armor. **Task:** Smelt 4 raw iron.

Reasoning: Since it's night and there's a zombie nearby, it's a good opportunity to try killing the zombie now that you have a stone sword and a shield equipped. **Task**: Kill 1 zombie.

Step 2: Skill Library

Code as Actions, refining with environment feedback

LLMs can also be finetuned / trained

Embodied Experiences from World Models: Synthetic Data Creation

Embodied Experiences from World Models: Synthetic Data Creation

Counting

Random Exploration

https://arxiv.org/pdf/2305.10626

Object Path Tracking

Transferring DPO to Trajectory: Exploration-based Trajectory Optimization

The correlation score can be used as a learned dense reward function to train a strong multi-task RL agent

The correlation score can be used as a learned dense reward function to train a strong multi-task RL agent

MineCLIP: Contrastive Video-Language Model

- The correlation score can be used as a learned dense reward function to train a strong multi-task RL agent

MineCLIP: Contrastive Video-Language Model

- The correlation score can be used as a learned dense reward function to train a strong multi-task RL agent

MineCLIP: Contrastive Video-Language Model

The correlation score can be used as a learned dense reward function to train a strong multi-task RL agent

Transition Model O_t, C

$$o_t, a \to o_{t+1}$$

"World Modeling"

- PDDL as world models
- LLMs as world models
- Video generation as world models "Large World Model"

PDDL as World Models

Environment	stained(bowl)		
Goal	not stained(bowl)		
Operator Name	CLEAN_WITH_BRUSH	ł	
Tra	nsition Modelina		
	Preconditions		
	stained(bowl)		
	soaked(scrub brush)		
ζ			
	holding(scrub brush)	I	
transitioning	holding(scrub brush)	⊘ Effects	

LLM Output

This video is for demonstration only. There're no actual controller-level actions. For action execution examples, visit our repository: https://github.com/embodied-agent-interface/embodied-agent-interface.

General Purpose Planner


```
. . .
2. ?o - householdObject: the small appliance to be toggled on
. . .
Preconditions:
(and
    . . .
    (not (appliance-on ?o))
)
Effects:
(and
    (appliance-on ?o)
)
New Predicates:
1. (appliance-on ?o - householdObject): true if the small appliance ?o is switched on
```


...

Step 2. Human Correction

Step 3. Planning with two hybrid approaches

LLMs as World Models

LLM-MCTS: LLMs as Commonsense Knowledge

Sample from the commonsense belief to obtain an initial state of the world

Type 1.1: True belief, short-term

- Scene: ... Inside the bridge, you'll find a bottle of wine...
- Actions: ... Finally, she moves towards the fridge, preparing to open it.
- Question: If Elizabeth has been trying to get a bottle of wine, which one of the following statements is more likely to be true? (a) Elizabeth thinks that there is a bottle of
- wine inside the fridge. (b) Elizabeth thinks that there isn't any bottle of
- wine inside the fridge.

Type 2.1: Goal given true belief

- Scene: ... The living room is furnished with a cabinet, ... The cabinet is filled with two apples, ..., and a bottle of wine. ... Inside the fridge, there are two apples.
- Actions: James... then opens the fridge, G closes it... Finally, he walks towards the living 0 room and approaches the cabinet.

Question: Which one of the following statements is more likely to be true? (a) James has been trying to get a bottle of wine.

(b) James has been trying to get an apple.

Type 1.2: False belief, short-term

Scene: ... The living room features a cabinet... The cabinet is filled with a bag of chips, a remote controller, a bottle of wine, and a water glass.

Actions: Jennifer is situated in the living room. She heads towards the cabinet and is about to open it.

Question: If Jennifer has been trying to get a cupcake, which one of the following statements is more likely to be true? (a) Jennifer thinks that there isn't a cupcake inside the cabinet. (b) Jennifer thinks that there is a cupcake inside the cabinet.

Type 2.2: Goal given false belief

Scene: ... There is a water glass inside the seventh cabinet... The fridge stores two cupcakes...

Actions: Mark... advances towards the seventh kitchen cabinet.

Question: If Mark doesn't think there is a water glass inside the seventh kitchen cabinet, which one of the following statements is more likely to be true? (a) Mark has been trying to get a water glass.

(b) Mark has been trying to get a cupcake.

https://arxiv.org/pdf/2401.08743

Type 1.3: Belief tracking, long-term

Scene: ... The kitchen is equipped with a fridge, sofa, dishwasher, eight cabinets, a stove, a microwave, and a kitchen table ... Actions: ... He walks to the seventh kitchen cabinet, opens and closes it. He repeats the same action with the sixth kitchen cabinet. Subsequently, he moves towards the dishwasher.

Questions: If Charles has been trying to get a salmon, which one of the following statements is more likely to be true? (a) Charles thinks that there is a salmon inside the fridge. (b) Charles thinks that there isn't any salmon inside the fridge.

Scene: ... The first cabinet, from left to right, contains a bag of chips. Actions: Mary... walks towards the first kitchen cabinet, opens it, and then closes it.

Question: Which one of the following statements is more likely to be true? (a) Mary has been trying to get a bag of chips. (b) Mark has been trying to get a condiment bottle.

Type 2.3: Goal given updated belief Type 2.4: Goal given future actions

Scene: ... The dishwasher holds a dish bowl ... The first cabinet from the left holds a bag of chips and a wine glass... The fifth cabinet has an apple...

Actions: Williams... advances towards the first kitchen cabinet, opens it, and then shuts it. He then moves towards the fifth kitchen cabinet.

Question: Which one of the following statements is more likely to be true? (a) William has been trying to get a wine glass.

(b) William has been trying to get a dish bowl.

Goal

Belief

Inference

elief

m

Inference

C

LLM-MCTS: LLMs as Commonsense Knowledge

Sample from the commonsense belief to obtain an initial state of the world

Video Generation as World Model (World Foundation Model)

Genie 2: World Foundation Model

NVIDIA Cosmos World Foundation Models

A family of pre-trained models purpose-built for generating physics-aware videos and world states for physical AI development.

Learn more about model architectures, development resources, and availability here.

Cosmos	Cosmos	Cosmos
Nano	Super	Ultra
Super low-latency, real-time models optimized for deploying at the edge	Highly performant baseline models for out-of-the-box fine- tuning and deployment	Maximum-accuracy and quality, provides best-fidelity knowledge transfer for distilling custom

- A video diffusion model trained to predict the next (variable length) set of observation frames

- A video diffusion model trained to predict the next (variable length) set of observation frames

A video diffusion model trained to predict the next (variable length) set of observation frames

Real-robot execution

Unified Virtual Agent

Goal

State

Action

Reward

Slides Credit: Wenlong

Goal

State

Action

Reward

Option 1: Flat Concatenation

Option 2: Hierarchical Encoding

Slides Credit: Wenlong

Option 1: Flat Concatenation

An Interactive Agent Foundation Model

Low-level Agent Prediction

https://arxiv.org/pdf/2402.05929

Option 1: Flat Concatenation

An Interactive Agent Foundation Model Unified Tokenization

Option 1: Flat Concatenation

An Interactive Agent Foundation Model Pretraining Pipeline:

Option 2: Aggregating o, a, r to one vector

Multi-Agent Collaboration

So Many Different Ways of Using LLMs

Existing Work	Goal Interpretation	Action Sequencing	Subgoal Decomposition	n Transition Modeling
SayCan	LLMs	LLMs	•	i i i i i i i i i i i i i i i i i i i
Ada	LLMs			LLMs
LLP+P	LLMs			
AutoTAMP		LLMs		LLMs
Code as Policies	LLMs	LLMs	LLMs	
Voyager	LLMs	LLMs		
Demo2Code	LLMs		LLMs	LLMs
LM as ZeroShot Planner		LLMs	LLMs	
SayPlan	LLMs	LLMs		LLMs
Text2Motion		LLMs		
LLMGROP	LLMs	LLMs		
REFLECT	LLMs	LLMs		
Generating Consistent PDDL Domains with LLMs	LLMs			LLMs
PlanSeqLearn		LLMs		
COWP	LLMs	LLMs		LLMs

So Many Different Ways of Using LLMs

Existing Work	Goal Interpretation	Action Sequencing	Subgoal Decomposition	n Transition Modeling
CAPE	LLMs	LLMs		
HERACLES		LLMs		
RoboTool		LLMs		LLMs
PROMST		LLMs		
LLM3	LLMs	LLMs		
Ghost in the Minecraft		LLMs		
PlanBench	LLMs	LLMs		
ТаРА	LLMs	LLMs	LLMs	
ChatGPT Robot Control		LLMs		
LLM World Models for Planning	LLMs	LLMs		
DEPS	LLMs	LLMs		
Grounded Decoding		LLMs		
ProgPrompt	LLMs	LLMs		
DROC		LLMs		LLMs
LMPC	LLMs Differen		Difforent I	nnut/Autnut
GPTPDDL	Dineren		Dinerent	nput/Output

So we need **Standardization!**

Embodied Agent Interface

Embodied Agent Interface

to benchmark LLMs for Embodied Decision Making

Let us go back to MDPs (Markov Decision Processes)

Embodied Agent Interface

Action Sequencing

Subgoal Decomposition

Transition Modeling

Goal Interpretation

Embodied Agent Interface

Standardize Modules and Interfaces

Standardize Goal Specifications

4 mo	dules
438	tasks
1475	goals

Standardize Goal Specifications

Task: Bottling Fruits

Linear Temporal Logic

Standardize

Goal Specifications

Standardize Modules and Interfaces

4	mo	dules	
4	-38	tasks	
1.	475	goals	

Standardize Fine-grained Metrics

> 18 models 42 metrics 100+ page analysis

Thank You

Outline

Content	Time	Presenter
1. Motivation and Overview	15min	Manling Li
2. Foundation Models meet Virtual Agents	45min	Manling Li
3. Foundation Models meet Physical Agents		
Overview & Perception	25min	Jiayuan Mao
High-level & Low-level Decision Making	50min	Wenlong Huang
Break		
4. Robotic Foundation Models	30min	Yunzhu
5. Remaining Challenges	15min	Yunzhu
QA	30min	