
AAAI 2025 Tutorial T04

Time: 2025-02-25  8:30-12:30

Location: Room 118A

Part II: Foundation Models meet Physical Agents

High-Level Decision-Making

AAAI Tutorial: Foundation Models Meet Embodied Agents



High-Level Policy

2

❑ We want to model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) based on:

◻ 𝑔: natural language goal

◻ 𝐴: discrete action space with pre-defined skills

◻ 𝑂: observations from robot sensors



High-Level Policy

3

❑ We want to model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) based on:

◻ 𝑔: natural language goal

◻ 𝐴: discrete action space with pre-defined skills

◻ 𝑂: observations from robot sensors

“Place all fruits in the red basket”

Action Space

PickPlace(apple, blue basket)

PickPlace(apple, red basket)

PickPlace(orange, blue basket)

...

or Natural Language Version:

“put apple in blue basket”

“put apple in red basket”

...

Example Goal, Action Space, and Observation



High-Level Policy

4

❑ What we may not have access to:

◻ 𝑆: underlying state representation

◻ 𝑇: transition model that predicts the state changes based on an action

Starting State

inside(apple, blue basket): True

inside(apple, red basket): False

Action

PickPlace(apple, red basket)

Resulting State

inside(apple, blue basket): False

inside(apple, red basket): True

Example State Representation and Transition



High-Level Policy

5

❑ What we may not have access to:

◻ 𝑆: underlying state representation

◻ 𝑇: transition model that predicts the state changes based on an action

Starting State

inside(apple, blue basket): True

inside(apple, red basket): False

Action

PickPlace(apple, red basket)

Resulting State

inside(apple, blue basket): False

inside(apple, red basket): True

Example State Representation and Transition

Two possible definition of “state”

- The underlying physical state of the world

- The agent’s state representation of the world → what we consider here



High-Level Policy

6

❑ What we may not have access to:

◻ 𝑆: underlying state representation

◻ 𝑇: transition model that predicts the state changes based on an action

◻ 𝑅: reward function in the state-action space based on 𝑔

inside(apple, red basket)

otherwise

Example Reward

𝑟 = ቊ
1
0



High-Level Policy

7

❑ What we may not have access to:

◻ 𝑆: underlying state representation

◻ 𝑇: transition model that predicts the state changes based on an action

◻ 𝑅: reward function in the state-action space based on 𝑔

◻ Expert demonstrations: ( g, 𝑜1, 𝑎1, 𝑜2, 𝑎2, ... )



High-Level Policy

8

❑ How can we come up with a policy based on different assumptions?

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 1

→ Behavior Cloning



High-Level Policy

9

❑ How can we come up with a policy based on different assumptions?

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 1

→ Behavior Cloning

Goal Skills Obs State Transition Reward Demos

1 1 1 1 1 1 0

→ Search or planning



High-Level Policy

10

❑ How can we come up with a policy based on different assumptions?

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 1

→ Behavior Cloning

Goal Skills Obs State Transition Reward Demos

1 1 1 1 1 1 0

→ Search or planning

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0

→ Humans can do it – how can my robot also do this?



LLMs as Planners

11

❑ How can we “plan” without state representation, transition function, or a 

reward function?

LLMs as Zero-Shot Planners. W. Huang, P. Abbeel, D. Pathak*, and I. Mordatch*. ICML 2022.



LLMs as Planners

12

❑ What LLMs actually provide: 𝑷 𝒂𝒕 𝒈)

◻ The likelihood of a step conditioned on goal and previous steps

◻ Example: P(“Step 1: put apple in red basket” | “Place all fruits in the red basket”)



LLMs as Planners

13

❑ What LLMs actually provide: 𝑷 𝒂𝒕 𝒈)

◻ The likelihood of a step conditioned on goal and previous steps

◻ Example: P(“Step 1: put apple in red basket” | “Place all fruits in the red basket”)

◻ Key issue: The generation is not conditioned on current state

■ i.e., it is not “embodied” as it can do anything at anytime



LLMs as Planners

14

❑ How can we model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) based on how we can plan with LLMs?

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0



LLMs as Planners

15

❑ How can we model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) based on how we can plan with LLMs?

❑ We can factor into two parts:

◻ LLM Prior: How likely is a particular skill at current time based on 

“commonsense”?

◻ Feasibility: Can the robot perform this skill successfully based on current 

observation?

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0



SayCan

16

❑ Formalizing “feasibility” by a per-skill value function

❑ Intuitively: “If I ask the robot to do [skill] now, will it do it successfully?

Do As I Can, Not As I Say. Ahn et al. CoRL 2022.



SayCan

17

❑ Formalizing “feasibility” by a per-skill value function

❑ Intuitively: “If I ask the robot to do [skill] now, will it do it successfully?

❑ How to obtain the value function? Based on how to obtain the skills, ...

◻ Reinforcement Learning: value function is naturally available

◻ Behavior Cloning: need to train posthoc success detector

◻ Manually-defined primitives: write rule-based value functions

Do As I Can, Not As I Say. Ahn et al. CoRL 2022.



SayCan

18

❑ Full algorithm:

◻ Start with high-level goal

◻ Compute likelihood of each 

skill under the LLM

◻ Compute the value function of 

each skill given current 

observation

◻ Multiply their probabilities

◻ Choose the most likely one

Do As I Can, Not As I Say. Ahn et al. CoRL 2022.



SayCan

19

Do As I Can, Not As I Say. Ahn et al. CoRL 2022.



SayCan

20

❑ Key Challenges:



SayCan

21

❑ Key Challenges:

◻ Integrated high-level and low-level decision making:

■ LLMs only plan the next step based on each skill’s text description instead of what it 

physically does

■ Example: stowing a book on shelf requires first grasping a book in a particular way, but 

the text description may just be “grasp book”



SayCan

22

❑ Key Challenges:

◻ Integrated high-level and low-level decision making:

■ LLMs only plan the next step based on each skill’s text description instead of what it 

physically does

■ Example: stowing a book on shelf requires first grasping a book in a particular way, but 

the text description may just be “grasp book”

◻ Robots may fail, but LLMs assume every step is successful



SayCan

23

❑ Key Challenges:

◻ Integrated high-level and low-level decision making:

■ LLMs only plan the next step based on each skill’s text description instead of what it 

physically does

■ Example: stowing a book on shelf requires first grasping a book in a particular way, but 

the text description may just be “grasp book”

◻ Robots may fail, but LLMs assume every step is successful

◻ Priors provided LLMs 𝑷 𝒂𝒕 𝒈) do not consider observations

■ Crucial if environments are dynamic or goal is underspecified

■ Example: Given task “place all fruits in the red basket”, what if some fruits are already in 

the basket or they are being taken out by another agent?



Conditioning LLMs on Observations

24

❑ How can we model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) directly with LLMs?



Conditioning LLMs on Observations

25

❑ How can we model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) directly with LLMs?

❑ Possible ideas:

◻ Textualize 𝒐𝒕 and put that in the prompt at each timestep -- no training needed

◻ Train 𝒐𝒕 into the LLMs and make them multimodal

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 1



Conditioning LLMs on Observations

26

❑ How can we model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) directly with LLMs?

❑ Possible ideas:

◻ Textualize 𝒐𝒕 and put that in the prompt at each timestep -- no training needed

◻ Train 𝒐𝒕 into the LLMs and make them multimodal

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 1



Conditioning LLMs on Observations

27

◻ Condition LLMs by textualizing observations

◻ Key Questions:

■ What to textualize from 𝒐𝒕 ?

■ How to textualize from 𝒐𝒕 ?

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0



Inner Monologue

28

◻ Textualize 𝒐𝒕 using a combination of the following:

■ Success detector: per-skill detector that says whether previous skill was successful

■ Structured scene description: structured text provided by specialized perception 

modules, such as object detectors

■ Unstructured scene description: unstructured text provided by another multi-modal 

LLMs or a human

◻ After every skill, provide the textualized 𝒐𝒕, and repeat the SayCan-style next skill selection

Inner Monologue. Huang*, Xiao*, Xia* et al. CoRL 2022.

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0



Inner Monologue

29Inner Monologue. Huang*, Xiao*, Xia* et al. CoRL 2022.



Code as Policies

30

◻ Alternatively, formulating it as a code-writing problem

■ Provide basic perception APIs and control primitives:

◻ `detect_objects`: return a list of present objects

◻ `pick_place`: motion primitive for picking up and placing an object

Code as Policies. Liang et al. ICRA 2023.

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0



Code as Policies

31

◻ Alternatively, formulating it as a code-writing problem

■ Provide basic perception APIs and control primitives:

◻ `detect_objects`: return a list of present objects

◻ `pick_place`: motion primitive for picking up and placing an object

◻ Why might this be a good idea?

■ LLMs can actively decide how to textualize 𝒐𝒕 to benefit its decision-making instead of 

passively being provided the same information

■ Programmatic structure enables use of precise numerical values, function composition, and 

logical structure, similar to how humans write policy,

Code as Policies. Liang et al. ICRA 2023.

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0



Code as Policies

32Code as Policies. Liang et al. ICRA 2023.

High-Level Session:

“parse_obj_name” Session:

“parse_shape_pts” Session:

Function Generator Session:



Conditioning LLMs on Observations

33

❑ How can we model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) with LLMs?

❑ Possible ideas:

◻ Textualize 𝒐𝒕 and put that in the prompt at each timestep -- no training needed

◻ Train 𝒐𝒕 into the LLMs and make them multimodal

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 1



PaLM-E

34

◻ Collect multi-modal expert demonstrations: ( g, 𝑜1, 𝑎1, 𝑜2, 𝑎2, ... )

◻ Start with pre-trained LLM and vision encoder

◻ Finetune them on the collected demonstrations and other vision-language data

PaLM-E. Driess et al. ICML 2023.



PaLM-E

35

◻ Collect multi-modal expert demonstrations: ( g, 𝑜1, 𝑎1, 𝑜2, 𝑎2, ... )

◻ Start with pre-trained LLM and vision encoder

◻ Finetune them on the collected demonstrations and other vision-language data

PaLM-E. Driess et al. ICML 2023.



Modeling Reward instead of Policy

36

❑ Recall we have been discussing how to model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) directly

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0/1



Modeling Reward instead of Policy

37

❑ Recall we have been discussing how to model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) directly

❑ Also recall that if we have a state representation and a transition model, we can 

alternatively model reward 𝑷 𝒓𝒕 𝒔𝒕−𝟏, 𝒂𝒕−𝟏, 𝒔𝒕, 𝒈). Then we can use planning or 

reinforcement learning to obtain actions/policies.

Goal Skills Obs State Transition Reward Demos

1 1 1 0 0 0 0/1

Goal Skills Obs State Transition Reward Demos

1 1 1 1 1 * 0



PDDL

38

❑ A standardized framework to specify (mostly symbolic) planning problems

❑ What it typically requires:

◻ discrete action space (e.g., “PickPlace”)

◻ state representation (e.g., “inside”)

◻ goal state (e.g., “inside(apple, red basket)”)

■ can be considered as a sparse reward function

◻ transition function for each action

❑ Well-suited for the task planning problem with high-level action space



LLM + P

39

Goal Skills Obs State Transition Reward Demos

1 1 N/A 1 1 * 0

LLM + P. Liu*, Jiang* et al. 2023.



LLM + P

40

❑ Example:

◻ Prompt contains:

■ language description of the 

current state

■ language description of goal

◻ LLM generates:

■ starting state in defined state 

representation

■ goal state (i.e., a sparse 

reward function)

Goal Skills Obs State Transition Reward Demos

1 1 N/A 1 1 * 0

LLM + P. Liu*, Jiang* et al. 2023.



LLM + P

41

❑ Take-away: If state and transition function are accessible, with a high-level 

action space, specifying goal state (i.e., the reward function) with LLMs and 

use classical planning algorithms is often more effective.

LLM + P. Liu*, Jiang* et al. 2023.



AAAI 2025 Tutorial T04

Time: 2025-02-25  8:30-12:30

Location: Room 118A

Part II: Foundation Models meet Physical Agents

Low-Level Decision-Making

AAAI Tutorial: Foundation Models Meet Embodied Agents



Low-Level Action Space

43

❑ The same key problem 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) but now with low-level action space

◻ 𝑎𝑡: joint space commands or end-effector commands

◻ 𝑔: natural language goal

◻ 𝑜𝑡: observations from robot sensors



Low-Level Action Space

44

❑ The same key problem 𝑷 𝒂𝒕 𝒐𝒕, 𝒈) but now with low-level action space

◻ 𝑎𝑡: joint space commands or end-effector commands

◻ 𝑔: natural language goal

◻ 𝑜𝑡: observations from robot sensors

❑ Why it’s much more challenging?

◻ Higher-frequency: typically 10-20 Hz

◻ Longer-horizon: large compounded errors over easily 1000s of steps

◻ Continuous and high-dimensional: brings challenging optimization landscape with lots 

of local minima

◻ In the context of this tutorial, low-level actions do not live in the same semantic 

abstraction with language compared to high-level actions.



Low-Level Action Space

45

❑ If expert demonstrations ( g, 𝑜1, 𝑎1, 𝑜2, 𝑎2, ... ) are assumed:

◻ We can directly model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈)

◻ VLMs can be finetuned to become Vision-Language-Action models (VLAs), discussed 

in the next session of the tutorial.

Goal Skills Obs State Transition Reward Demos

1 0 1 0 0 0 1



Low-Level Action Space

46

❑ If expert demonstrations ( g, 𝑜1, 𝑎1, 𝑜2, 𝑎2, ... ) are assumed:

◻ We can directly model 𝑷 𝒂𝒕 𝒐𝒕, 𝒈)

◻ VLMs can be finetuned to become Vision-Language-Action models (VLAs), discussed 

in the next session of the tutorial.

❑ Alternatively, we can model these and then “solve for” actions:

◻ A state representation 𝐒

◻ Transition function: 𝐒 × 𝐴 → 𝐒

◻ Reward function: 𝐒 × 𝐴 → ℝ

❑ LLMs/VLMs are typically used to model the reward functions based on the language goal.

Goal Skills Obs State Transition Reward Demos

1 0 1 0 0 0 1

Goal Skills Obs State Transition Reward Demos

1 0 1 1 1 * 0

x



Reward Specification with LLMs / VLMs

47

❑ Translating language goal to 𝐑 𝐒, 𝐀 -- why might this be a good idea?



Reward Specification with LLMs / VLMs

48K. Wyrobek, E. Berger, H.F.M. Van der Loos, and K. Salisbury. ICRA 2008.

❑ Translating language goal to 𝐑 𝐒, 𝐀 -- why might this be a good idea?

◻ Language goal is often underspecified: what does it mean by “tidying up a room”?



Reward Specification with LLMs / VLMs

49K. Wyrobek, E. Berger, H.F.M. Van der Loos, and K. Salisbury. ICRA 2008.

❑ Translating language goal to 𝐑 𝐒, 𝐀 -- why might this be a good idea?

◻ Language goal is often underspecified: what does it mean by “tidying up a room”?

◻ Reward is typically more about desired state instead of desired actions



Reward Specification with LLMs / VLMs

50K. Wyrobek, E. Berger, H.F.M. Van der Loos, and K. Salisbury. ICRA 2008.

❑ Translating language goal to 𝐑 𝐒, 𝐀 -- why might this be a good idea?

◻ Language goal is often underspecified: what does it mean by “tidying up a room”?

◻ Reward is typically more about desired state instead of desired actions

◻ This type of knowledge should be within the “interpolated space” of LLMs/VLMs



Reward Specification with LLMs / VLMs

51

❑ Key question: what should be the state representation (𝐒)?

◻ Recall:

■ Reward function: 𝐒 × 𝐴 → ℝ

■ Transition function: 𝐒 × 𝐴 → 𝐒



Reward Specification with LLMs / VLMs

52

❑ Key question: what should be the state representation (𝐒)?

◻ Recall:

■ Reward function: 𝐒 × 𝐴 → ℝ

■ Transition function: 𝐒 × 𝐴 → 𝐒

◻ Such that:

■ Reward is extractable from LLMs/VLMs

■ There needs to be an associated transition function that can support the desired tasks 

(such that we can use the reward function to generate actions)



Reward Specification with LLMs / VLMs

53

❑ Case studies:

◻ Language to Rewards & Eureka

◻ VoxPoser

◻ ReKep



Reward Specification with LLMs / VLMs

54

❑ Case studies:

◻ Language to Rewards & Eureka:

■ State Representation: the simulator state (e.g., rigid-body poses, articulation, velocities)

■ Transition Function: simulator

■ Action Space: joint space commands

◻ VoxPoser

◻ ReKep



Language to Rewards

55Language to Rewards. Yu*, Gileadi* et al. CoRL 2023.

❑ Key Idea:

◻ Start with open-ended language goal

◻ Provide a set of basic reward APIs:

■ “set_feet_pos_reward”

■ “set_l2_distance_reward”

■ “set_obj_orientation_reward”

■ ...

◻ LLMs compose full reward function

◻ Perform sampling/planning with 

simulator as the transition function to 

obtain actions



Language to Rewards

56Language to Rewards. Yu*, Gileadi* et al. CoRL 2023.



Eureka

57Eureka. Ma et al. ICLR 2024.



Eureka

58Eureka. Ma et al. ICLR 2024.



Eureka

59Eureka. Ma et al. ICLR 2024.



Eureka

60Eureka. Ma et al. ICLR 2024.



Eureka

61Eureka. Ma et al. ICLR 2024.



Eureka

62Eureka. Ma et al. ICLR 2024.



Language to Rewards & Eureka

63

❑ Take-away: While it’s challenging for LLMs to directly predict low-level actions, specifying 

reward can be a promising path of utilizing their knowledge even with a low-level action space.



Language to Rewards & Eureka

64

❑ Take-away: While it’s challenging for LLMs to directly predict low-level actions, specifying 

reward can be a promising path of utilizing their knowledge even with a low-level action space.

❑ Similarities:

◻ Both use simulator state as the state representation for reward specification

■ Pros: Allow the direct use of simulator as the transition function

■ Cons: Real2Sim and Sim2Real present a significant challenge

❑ Differences:

◻ Language to Rewards uses MPC for action generation.

◻ Eureka uses RL for action generation.



Reward Specification with LLMs / VLMs

65

❑ Case studies:

◻ Language to Rewards & Eureka

◻ VoxPoser:

■ State Representation: 3D voxels of workspace

■ Transition Function: Robot only

■ Action Space: end-effector pose

◻ ReKep



VoxPoser

66

❑ Key Idea: Given a language goal, LLMs and VLMs can write code to iteratively assign reward 

values to different locations in a 3D voxel grid that represents robot workspace.

VoxPoser. Huang et al. CoRL 2023.



VoxPoser

67

❑ Key Idea: Given a language goal, LLMs and VLMs can write code to iteratively assign reward 

values to different locations in a 3D voxel grid that represents robot workspace.

VoxPoser. Huang et al. CoRL 2023.

Open the top drawer.



VoxPoser

68

❑ Key Idea: Given a language goal, LLMs and VLMs can write code to iteratively assign reward 

values to different locations in a 3D voxel grid that represents robot workspace.

VoxPoser. Huang et al. CoRL 2023.

Open the top drawer.

def value_map():
msize = (100,100,100)
map = np.zeros(msize)
handles = detect('handle')
k = lambda x: x.pos[2]
handles.sort(key=k)
top_handle = handles[-1]
x,y,z = top_handle.pos
map[x,y,z] = 1
return smooth(map)

LLM Output



VoxPoser

69

❑ Key Idea: Given a language goal, LLMs and VLMs can write code to iteratively assign reward 

values to different locations in a 3D voxel grid that represents robot workspace.

VoxPoser. Huang et al. CoRL 2023.

Open the top drawer.

def value_map():
msize = (100,100,100)
map = np.zeros(msize)
handles = detect('handle')
k = lambda x: x.pos[2]
handles.sort(key=k)
top_handle = handles[-1]
x,y,z = top_handle.pos
map[x,y,z] = 1
return smooth(map)

LLM Output

VLM



VoxPoser

70

❑ Key Idea: Given a language goal, LLMs and VLMs can write code to iteratively assign reward 

values to different locations in a 3D voxel grid that represents robot workspace.

VoxPoser. Huang et al. CoRL 2023.

Open the top drawer.

def value_map():
msize = (100,100,100)
map = np.zeros(msize)
handles = detect('handle')
k = lambda x: x.pos[2]
handles.sort(key=k)
top_handle = handles[-1]
x,y,z = top_handle.pos
map[x,y,z] = 1
return smooth(map)

LLM Output



VoxPoser

71

❑ Key Idea: Given a language goal, LLMs and VLMs can write code to iteratively assign reward 

values to different locations in a 3D voxel grid that represents robot workspace.

VoxPoser. Huang et al. CoRL 2023.

Open the top drawer.

def value_map():
msize = (100,100,100)
map = np.zeros(msize)
handles = detect('handle')
k = lambda x: x.pos[2]
handles.sort(key=k)
top_handle = handles[-1]
x,y,z = top_handle.pos
map[x,y,z] = 1
return smooth(map)

LLM Output



VoxPoser

72

❑ After obtaining the 3D value maps, perform motion planning to obtain end-effector actions.

VoxPoser. Huang et al. CoRL 2023.

Open the top drawer.

def value_map():
msize = (100,100,100)
map = np.zeros(msize)
handles = detect('handle')
k = lambda x: x.pos[2]
handles.sort(key=k)
top_handle = handles[-1]
x,y,z = top_handle.pos
map[x,y,z] = 1
return smooth(map)

LLM Output

high

cost

high

reward

x

y

z

3D Value Map

Motion Planning



VoxPoser

73VoxPoser. Huang et al. CoRL 2023.



VoxPoser

74VoxPoser. Huang et al. CoRL 2023.

❑ Take-away:

◻ LLMs can specify voxel-based reward by using a code interface that can be more 

applicable to real-world execution

◻ Transition model for the environment is challenging to obtain because it needs to work in-

the-wild, so only robot transition model is used.

■ The implication: only applicable to quasi-static and relatively simple tasks.



VoxPoser

75VoxPoser. Huang et al. CoRL 2023.

❑ Take-away:

◻ LLMs can specify voxel-based reward by using a code interface that can be more 

applicable to real-world execution

◻ Transition model for the environment is challenging to obtain because it needs to work in-

the-wild, so only robot transition model is used.

■ The implication: only applicable to quasi-static and relatively simple tasks.

◻ The generated reward function does not consider temporal dependencies of actions.

A “pour tea” task



Reward Specification with LLMs / VLMs

76

❑ Case studies:

◻ Language to Rewards & Eureka

◻ VoxPoser

◻ ReKep:

■ State Representation: 3D keypoints

■ Transition Function: Rigid attachment

■ Action Space: End-effector pose



ReKep

77

❑ Key Idea:

◻ Represent tasks as a sequence of keypoint-based constraint functions.

ReKep. Huang et al. CoRL 2024.



ReKep

78

❑ Key Idea:

◻ Represent tasks as a sequence of keypoint-based constraint functions.

◻ Using 3D keypoints as state (𝐒) and end-effector pose as action, we may use a transition 

model (𝐒 × 𝐀 → 𝐒) based on rigid attachment assumption (i.e., transform the “attached-to-

robot” keypoints by the action).

ReKep. Huang et al. CoRL 2024.



ReKep

79

❑ Step 1: Obtain a set of semantically meaningful keypoints in the scene

ReKep. Huang et al. CoRL 2024.

RGB-D

Observation Large

Vision

Models

SAM + 

DINOv2

3
2

1

0



ReKep

80

❑ Step 1: Obtain a set of semantically meaningful keypoints in the scene

❑ Step 2: Visually prompt VLM to write keypoint-based constraint code.

ReKep. Huang et al. CoRL 2024.

Vision

Language

Model

GPT-4o

Pour tea into the cup.

3
2

1

0

def subgoal_stage1_f1(k):

dist = norm(k[0]–k[1])

return dist

def path_stage2_f1(k):

z_diff = abs(k[1]–k[2])

return z_diff

def subgoal_stage2_f1(k):

k[3][2] += 0.10

return norm(k[2]-k[3])

...



ReKep

81

❑ Step 1: Obtain a set of semantically meaningful keypoints in the scene

❑ Step 2: Visually prompt VLM to write keypoint-based constraint code.

❑ Step 3: Perform constrained optimization to obtain robot actions.

ReKep. Huang et al. CoRL 2024.

Vision

Language

Model

GPT-4o

Pour tea into the cup.

3
2

1

0

def subgoal_stage1_f1(k):

dist = norm(k[0]–k[1])

return dist

def path_stage2_f1(k):

z_diff = abs(k[1]–k[2])

return z_diff

def subgoal_stage2_f1(k):

k[3][2] += 0.10

return norm(k[2]-k[3])

...

Constrained

Optimization

End-Effector Actions



ReKep

82ReKep. Huang et al. CoRL 2024.

4X

Closed-Loop Replanning at 10 Hz



ReKep

83ReKep. Huang et al. CoRL 2024.

sweater shirt hoodievest

4X 4X 4X 4X



Part II Summary

84

❑ We can formalize both high-level and low-level action space under the same MDP



Part II Summary

85

❑ We can formalize both high-level and low-level action space under the same MDP

❑ Similar paradigms in both cases for obtaining actions:

◻ If expert demos are available, we can directly model 𝐏 𝐚𝐭 𝐨𝐭, 𝐠)

◻ If not, we need a state representation (S), reward function (R), transition function (T). Then we 

can perform planning to obtain actions.



Part II Summary

86

❑ We can formalize both high-level and low-level action space under the same MDP

❑ Similar paradigms in both cases for obtaining actions:

◻ If expert demos are available, we can directly model 𝐏 𝐚𝐭 𝐨𝐭, 𝐠)

◻ If not, we need a state representation (S), reward function (R), transition function (T). Then we 

can perform planning to obtain actions.

❑ Only for high-level actions: LLMs may be used without finetuning, but certain challenges remained.



Part II Summary

87

❑ We can formalize both high-level and low-level action space under the same MDP

❑ Similar paradigms in both cases for obtaining actions:

◻ If expert demos are available, we can directly model 𝐏 𝐚𝐭 𝐨𝐭, 𝐠)

◻ If not, we need a state representation (S), reward function (R), transition function (T). Then we 

can perform planning to obtain actions.

❑ Only for high-level actions: LLMs may be used without finetuning, but certain challenges remained.

❑ Low-level actions are significantly more challenging.

◻ Modeling reward remains an effective way of integrating the knowledge LLMs/VLMs for action 

generation.

◻ The choice of a state representation is crucial as it impacts how the reward and transition 

functions are defined and how they can be obtained.


	physical - policy
	Slide 1: Part II: Foundation Models meet Physical Agents High-Level Decision-Making
	Slide 2: High-Level Policy
	Slide 3: High-Level Policy
	Slide 4: High-Level Policy
	Slide 5: High-Level Policy
	Slide 6: High-Level Policy
	Slide 7: High-Level Policy
	Slide 8: High-Level Policy
	Slide 9: High-Level Policy
	Slide 10: High-Level Policy
	Slide 11: LLMs as Planners
	Slide 12: LLMs as Planners
	Slide 13: LLMs as Planners
	Slide 14: LLMs as Planners
	Slide 15: LLMs as Planners
	Slide 16: SayCan
	Slide 17: SayCan
	Slide 18: SayCan
	Slide 19: SayCan
	Slide 20: SayCan
	Slide 21: SayCan
	Slide 22: SayCan
	Slide 23: SayCan
	Slide 24: Conditioning LLMs on Observations
	Slide 25: Conditioning LLMs on Observations
	Slide 26: Conditioning LLMs on Observations
	Slide 27: Conditioning LLMs on Observations
	Slide 28: Inner Monologue
	Slide 29: Inner Monologue
	Slide 30: Code as Policies
	Slide 31: Code as Policies
	Slide 32: Code as Policies
	Slide 33: Conditioning LLMs on Observations
	Slide 34: PaLM-E
	Slide 35: PaLM-E
	Slide 36: Modeling Reward instead of Policy
	Slide 37: Modeling Reward instead of Policy
	Slide 38: PDDL
	Slide 39: LLM + P
	Slide 40: LLM + P
	Slide 41: LLM + P
	Slide 42: Part II: Foundation Models meet Physical Agents Low-Level Decision-Making
	Slide 43: Low-Level Action Space
	Slide 44: Low-Level Action Space
	Slide 45: Low-Level Action Space
	Slide 46: Low-Level Action Space
	Slide 47: Reward Specification with LLMs / VLMs
	Slide 48: Reward Specification with LLMs / VLMs
	Slide 49: Reward Specification with LLMs / VLMs
	Slide 50: Reward Specification with LLMs / VLMs
	Slide 51: Reward Specification with LLMs / VLMs
	Slide 52: Reward Specification with LLMs / VLMs
	Slide 53: Reward Specification with LLMs / VLMs
	Slide 54: Reward Specification with LLMs / VLMs
	Slide 55: Language to Rewards
	Slide 56: Language to Rewards
	Slide 57: Eureka
	Slide 58: Eureka
	Slide 59: Eureka
	Slide 60: Eureka
	Slide 61: Eureka
	Slide 62: Eureka
	Slide 63: Language to Rewards & Eureka
	Slide 64: Language to Rewards & Eureka
	Slide 65: Reward Specification with LLMs / VLMs
	Slide 66: VoxPoser
	Slide 67: VoxPoser
	Slide 68: VoxPoser
	Slide 69: VoxPoser
	Slide 70: VoxPoser
	Slide 71: VoxPoser
	Slide 72: VoxPoser
	Slide 73: VoxPoser
	Slide 74: VoxPoser
	Slide 75: VoxPoser
	Slide 76: Reward Specification with LLMs / VLMs
	Slide 77: ReKep
	Slide 78: ReKep
	Slide 79: ReKep
	Slide 80: ReKep
	Slide 81: ReKep
	Slide 82: ReKep
	Slide 83: ReKep
	Slide 84: Part II Summary
	Slide 85: Part II Summary
	Slide 86: Part II Summary
	Slide 87: Part II Summary


