

AAAI 2025 Tutorial T04 Time: 2025-02-25 8:30-12:30 Location: 118A Pennsylvania Convention Center

Foundation Models Meet Embodied Agents

Manling Li Northwestern

Yunzhu Li Columbia

Jiayuan Mao MIT

Wenlong Huang Stanford

Northwestern University

COLUMBIA

AAAI 2025 Tutorial T04 Time: 2025-02-25 8:30-12:30 Location: 118A Pennsylvania Convention Center

Part I: Motivation and Overview

Manling Li, Assistant Professor at Northwestern University

AAAI Tutorial: Foundation Models Meet Embodied Agents

Northwestern University

COLUMBIA

What is a generalist agent?

Having a robot that can do many tasks, across many environments.

Figure credits: Jiayuan Mao

BEHAVIOR-1K

simulating and benchmarking robot tasks that matter to humans

BEH VIOR-1K tasks that matter

Observation

State: 3D assets & states

https://behavior.stanford.edu/

Transition Model

tasks that matter What would you like a robot to help you with?

Cleaning the floor?

Images Generated by DALL-E 3

tasks that matter What would you like a robot to help you with?

Folding Laundry?

Images Generated by DALL-E 3

What would you like a robot to help you with?

tasks that matter

Cooking Breakfast?

Images Generated by DALL-E 3

What would you like a robot to help you with?

tasks that matter

Opening gifts?

Images Generated by DALL-E 3

What would you like a robot to help you with?

tasks that matter

Cleaning after a wild party?

Images Generated by DALL-E 3

Human: Organize and tidy up the bedroom.

LEO:

 Clean the floor by sweeping to remove ...
Make the bed ...
Fold and organize ...

Human: Find the pillow

LEO: 1. Move forward 2. Turn right 3. Move forward 4. ...

What is "embodied decision making"?

Can we leverage MDP as a guiding principle to categorize "foundation models"?

MineDojo

MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge

https://arxiv.org/abs/2206.08853

MDP Environment: GTA

MDP Environment: Web Agent Env

VisualWebBench: How Far Have Multimodal LLMs Evolved in Web Page Understanding and Grounding? https://arxiv.org/pdf/2404.05955

Environment : Observation (Rendered 2D Images)

Enabled by large dataset of realistic interactive scenes and objects

50 Scenes

Enabled by large dataset of realistic interactive scenes and objects

$\xrightarrow{\text{O}} \text{Action : can robots learn to solve these tasks?}$ $\xrightarrow{\text{What capabilities are needed?} }$

MDP Action Space: Skills

Perception / State Estimation

 $o \rightarrow s$

Observation (2D rendered scenes)

State (3D assets)

Goal Interpretation 8

Set up the table.

Set up the table.

Policy $\pi(o,g) \to a$

. . .

. . .

Transition Modeling

input:	Prese	rving	food	
--------	-------	-------	------	--

inside (strawberry, pan) . . .

BEH VIOR

cooked (strawberry)

Operator

Action Trajectory

. . .

. . .

- OPEN (oven)
- **A**8 RIGHT_GRASP(pan)
- RIGHT_PLACE_INSIDE (oven) **A9**
- CLOSE(oven) A10
- A11 COOK(strawberry)

This video is for demonstration only. There're no actual controller-level actions. For action execution examples, visit our repository: https://github.com/embodied-agent-interface/embodied-agent-interface.

- - -

. . .

. . .

. . .

Transition Modeling

Input: Preserving food

inside (strawberry, pan)

cooked (strawberry)

Operator

Action Trajectory

. . .

- OPEN (oven)
- **A8**
- RIGHT_PLACE_INSIDE (oven) **A9**
- CLOSE(oven) A10
- A11 COOK(strawberry)

This video is for demonstration only. There're no actual controller-level actions. For action execution examples, visit our repository: https://github.com/embodied-agent-interface/embodied-agent-interface.

- - -

. . .

. . .

. . .

Transition Modeling

Input: Preserving food

cooked (strawberry)

ıl 👘	
2.02	

BEH VIOR

Action Trajectory

....

. . .

- A7 OPEN (oven)
- A8 RIGHT_GRASP(pan)
- A9 RIGHT_PLACE_INSIDE (oven)
- A10 CLOSE(oven)
- A11 COOK(strawberry)

This video is for demonstration only. There're no actual controller-level actions. For action execution examples, visit our repository: https://github.com/embodied-agent-interface/embodied-agent-interface.

. . .

. . .

Transition Modeling

Input: Preserving food

cooked (strawberry)	
---------------------	--

Operator

Action Trajectory

•• 📀

. . .

. . .

- A7 OPEN (oven)
- A8 RIGHT_GRASP(pan)
- A9 RIGHT_PLACE_INSIDE (oven)
- A10 CLOSE(oven)
- A11 COOK(strawberry) 🤣

This video is for demonstration only. There're no actual controller-level actions. For action execution examples, visit our repository: https://github.com/embodied-agent-interface/embodied-agent-interface.

https://arxiv.org/pdf/2305.10626

Transition Model O_t, C

$$o_t, a \to o_{t+1}$$

"World Modeling"

class **SlicingRule**:

Allows us to capture arbitrarily complex physical phenomena!

Virtual Agents vs Physical Agents

Different Instantiations of MDP

Noisy actuations

Noisy odometry

Multiple perceptual modalities

Perfect actuations

Perfect odometry

RGB only perception

https://embodiedga.org/slides/ega matterport.slides.pdf

Outline

Content	Time	Presenter
1. Motivation and Overview	15min	Manling Li
2. Foundation Models meet Virtual Agents 45min		Manling Li
3. Foundation Models meet Physical Agents		
Overview & Perception	25min	Jiayuan Mao
High-level & Low-level Decision Making	50min	Wenlong Huang
Break		
4. Robotic Foundation Models 30min		Yunzhu Li
5. Remaining Challenges 15		Yunzhu Li
QA	30min	