
Re2 Agent: Reflection and Re-execution Agent

for Embodied Decision Making
Yang Chen1,2 Hong-Jie You1,3 Jie-Jing Shao1 Xiao-Wen Yang1,3 Ming Yang1,3

Yu-Feng Li1,3 Lan-Zhe Guo1,2,*

(nju-lamda12)

1 State Key Laboratory of Novel Software Technology, Nanjing University
2 School of Intelligence Science and Technology, Nanjing University

3 School of Artificial Intelligence, Nanjing University
* Corresponding author (guolz@lamda.nju.edu.cn)

Embodied Agent Interface Challenge @ NeurIPS 2025

Background

1

Action 1 -> Action 2 -> … -> Action N

Embodied Benchmark

Embodied task

Fail
×

Succ.
√

or

Sim.A Sim.Bor

Embodied Decision Making

Perception
State

Environment Dynamics

Decision making

Goals & Value
Action Policy

Learning & Memory

Background

2

EAI Benchmark

Action 1 -> Action 2 -> … -> Action N

Current Benchmark

Embodied task

Fail
×

Succ.
√

or

Sim.A Sim.Bor

Sim.A Sim.B+

Embodied task

Goal
Interpretation

Subgoal Decomposition

Transition Modeling

Action Sequencing

task

×
60% +

A lack of standardization in three areas:
1. Embodied decision-making tasks
2. Modules that an LLM can interface
with or be implemented for
3. Fine-grained evaluation metrics
beyond a single success rate

1. Standardization of goal specifications
2. Standardization of modules and
interfaces
3. Standardization of fine-grained
evaluation metrics with broad coverage

Current Embodied Decision Making

3

Motivation

Decision–
Action
Loop

Perception
State

Environment Dynamics

Goals & Value
Action Policy

Learning & Memory

Active
Inference

Feedback

Perception
State

Environment Dynamics

Decision making

Goals & Value
Action Policy

Learning & Memory

Decision-Action Loop

Method

4

Overview of the Re2 Agent framework. The system operates in three stages: (1) knowledge-driven prompt design; (2)
reflective of execution reports and metrics to derive task rules; and (3) re-execution of the task through environmental
interaction to produce the final output.

Method

5

Module 1: Goal Interpretation

Knowledge-Driven Prompt Design:

• Goal Interpretation: Formalized as minimal end-state synthesis under hard constraints.

• Structured Output: Deterministic JSON with three lists: node goals, edge goals, and action goals.

• Relation-First Modeling: Prioritizes containment and placement tasks.

• State-Action Separation: Prefers state goals for device control; uses action goals only when necessary.

• Minimization Principle: Removes intermediate states and contradictions to improve executability.

• Outcome: Compact, simulator-aligned specifications that reduce error propagation and stabilize downstream

evaluation.

Rule-Centric Agent Design:

• Generator + Corrector: Combines initial prediction with reflective feedback and temporal logic.

• Correction Process: Uses original goal, previous output, and reference examples to produce corrected JSON

and LTL-like formulas.

• Rule Induction: Driven by execution reports and success metrics for consistency with environment

constraints.

• Closed-Loop Refinement: Agent re-executes tasks with injected rules, analyzes outcomes, and iterates.

• Result: Higher success rates, cleaner specifications, and improved semantic alignment.

Method

6

LLMs as
Goal Interpretation

LLMs as
Corrector

Goal State
Execute

 Reports
Task RULES

Task2: Subgoal Decomposition

Knowledge-Driven Prompt Design:

• Goal: Generate an executable action sequence transforming initial state s0 to target state g.

• Strategy: One-shot autoregressive generation using LLMs; full sequence produced in a single forward pass.

• Inputs: s0 ​, g, and interactable objects O.

• Constraints:

• Physical: Hand occupancy, free manipulators.

• Temporal: Correct ordering (e.g., open container before placing objects).

• Logical: Action-specific preconditions.

Method

7

Method

8

Rule-Centric Agent Design:

• Output Format: Python-evaluable list of dictionaries; no explanatory text or markdown.

• Validation Pipeline:

• Format Validation: Structural correctness.

• Hallucination Detection: Ensure actions ∈ A, objects ∈ O.

• Argument Validation: Parameter consistency.

• Executability Check: Sequential execution via transition model M; detects missing steps, extra steps,

incorrect order, infeasible actions.

LLMs as
Corrector

Output
Format

Validation

Executability
Check

Format

Argument

Hallucination

Comparison of BEHAVIOR and VirtualHome

9

• Common Strengths: High grammatical correctness, strong state goal achievement.

• Differences:

• VirtualHome excels in planning coherence & subgoal decomposition, but struggles with

semantic interpretation & transition modeling.

• BEHAVIOR shows robust semantic reasoning & transition modeling, but weaker in subgoal

decomposition.

• Recommendation:

• Develop environment-adaptive strategies for navigation, semantic abstraction, and action-space

complexity.

• Incorporate rule-based validation and explicit navigation modules to reduce hallucinations and

ordering errors.

Experiment

10

We evaluated GPT-series models (GPT-4o, GPT-o3, GPT-5) using closed-source API calls,
with GPT-5 as the primary planner. Tasks were long-horizon, so the context length was
set to 8192 tokens, and each task allowed up to 5 retries with reflective summaries to
improve subsequent attempts.

Re¹ means using only one round of prompt optimization.

Conclusion

11

• Our work establishes that iterative reflection and rule abstraction are critical for robust embodied

decision making. Evaluated on the Embodied Agent Interface benchmark, our Re2 agent achieves a

combined score of 81.36 (86.35 on BEHAVIOR, 76.36 on VirtualHome), significantly outperforming

non-iterative baselines and demonstrating effective closing of the gap between language

understanding and grounded action execution.

• Looking ahead, we aim to build upon the Re2 agent framework by collecting more environmental

interaction data, thereby truly integrating the learning capabilities of LLMs with dynamic feedback

from embodied scenarios to achieve closed-loop responsiveness in open-world settings.

Visual-Language Prompt Tuning with Knowledge-guided Context Optimization 13

Thanks for your listening!

Presented by Yang Chen

2025-12-07

	Slide 1
	Slide 2: Background
	Slide 3: Background
	Slide 4
	Slide 5: Method
	Slide 6: Method
	Slide 7: Method
	Slide 8: Method
	Slide 9: Method
	Slide 10: Comparison of BEHAVIOR and VirtualHome
	Slide 11: Experiment
	Slide 12: Conclusion
	Slide 13

