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A lack of standardization in three areas:
1. Embodied decision-making tasks
2. Modules that an LLM can interface 
with or be implemented for
3. Fine-grained evaluation metrics 
beyond a single success rate

1. Standardization of goal specifications
2. Standardization of modules and 
interfaces
3. Standardization of fine-grained 
evaluation metrics with broad coverage
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Overview of the Re2 Agent framework. The system operates in three stages: (1) knowledge-driven prompt design; (2) 
reflective of execution reports and metrics to derive task rules; and (3) re-execution of the task through environmental 
interaction to produce the final output.
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Module 1: Goal Interpretation

Knowledge-Driven Prompt Design:

• Goal Interpretation: Formalized as minimal end-state synthesis under hard constraints.

• Structured Output: Deterministic JSON with three lists: node goals, edge goals, and action goals.

• Relation-First Modeling: Prioritizes containment and placement tasks.

• State-Action Separation: Prefers state goals for device control; uses action goals only when necessary.

• Minimization Principle: Removes intermediate states and contradictions to improve executability.

• Outcome: Compact, simulator-aligned specifications that reduce error propagation and stabilize downstream 

evaluation.



Rule-Centric Agent Design:

• Generator + Corrector: Combines initial prediction with reflective feedback and temporal logic.

• Correction Process: Uses original goal, previous output, and reference examples to produce corrected JSON 

and LTL-like formulas.

• Rule Induction: Driven by execution reports and success metrics for consistency with environment 

constraints.

• Closed-Loop Refinement: Agent re-executes tasks with injected rules, analyzes outcomes, and iterates.

• Result: Higher success rates, cleaner specifications, and improved semantic alignment.
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Task2: Subgoal Decomposition

Knowledge-Driven Prompt Design:

• Goal: Generate an executable action sequence transforming initial state s0 to target state g.

• Strategy: One-shot autoregressive generation using LLMs; full sequence produced in a single forward pass.

• Inputs: s0 ​, g, and interactable objects O.

• Constraints:

• Physical: Hand occupancy, free manipulators.

• Temporal: Correct ordering (e.g., open container before placing objects).

• Logical: Action-specific preconditions.
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Rule-Centric Agent Design:

• Output Format: Python-evaluable list of dictionaries; no explanatory text or markdown.

• Validation Pipeline:

• Format Validation: Structural correctness.

• Hallucination Detection: Ensure actions ∈ A, objects ∈ O.

• Argument Validation: Parameter consistency.

• Executability Check: Sequential execution via transition model M; detects missing steps, extra steps, 

incorrect order, infeasible actions.

LLMs as 
Corrector

Output 
Format

Validation

Executability
Check

Format

Argument

Hallucination



Comparison of BEHAVIOR and VirtualHome
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• Common Strengths: High grammatical correctness, strong state goal achievement.

• Differences:

• VirtualHome excels in planning coherence & subgoal decomposition, but struggles with 

semantic interpretation & transition modeling.

• BEHAVIOR shows robust semantic reasoning & transition modeling, but weaker in subgoal 

decomposition.

• Recommendation:

• Develop environment-adaptive strategies for navigation, semantic abstraction, and action-space 

complexity.

• Incorporate rule-based validation and explicit navigation modules to reduce hallucinations and 

ordering errors.



Experiment
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We evaluated GPT-series models (GPT-4o, GPT-o3, GPT-5) using closed-source API calls, 
with GPT-5 as the primary planner. Tasks were long-horizon, so the context length was 
set to 8192 tokens, and each task allowed up to 5 retries with reflective summaries to 
improve subsequent attempts. 

Re¹ means using only one round of prompt optimization.
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• Our work establishes that iterative reflection and rule abstraction are critical for robust embodied 

decision making. Evaluated on the Embodied Agent Interface benchmark, our Re2 agent achieves a 

combined score of 81.36 (86.35 on BEHAVIOR, 76.36 on VirtualHome), significantly outperforming 

non-iterative baselines and demonstrating effective closing of the gap between language 

understanding and grounded action execution. 

• Looking ahead, we aim to build upon the Re2 agent framework by collecting more environmental 

interaction data, thereby truly integrating the learning capabilities of LLMs with dynamic feedback 

from embodied scenarios to achieve closed-loop responsiveness in open-world settings.
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Thanks for your listening!

Presented by Yang Chen

2025-12-07
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