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Current Benchmark EAl Benchmark
Embodied task Embodied task
_________ s |
| A lack of standardization in three areas: | | 1. Standardization of goal specifications

| 2. Standardization of modules and

I
| 1. Embodied decision-making tasks :
: interfaces |

I
I
I

| 2. Modules that an LLM can interface
| with or be implemented for

| 3. Fine-grained evaluation metrics

| beyond a single success rate

| 3. Standardization of fine-grained
| evaluation metrics with broad coverage
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Task Modules

GoalInterpretation
Subgoal Decomposition
Action Sequencing

Transition Modeling

J
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Rule-centric
Agent
Logical Rule

Physical Rule

Formatting Rule

Overview of the Re’ Agent framework. The system operates in three stages: (1) knowledge-driven prompt design; (2)
reflective of execution reports and metrics to derive task rules; and (3) re-execution of the task through environmental

interaction to produce the final output.
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Stage2 - Agent Reflection
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Stage3 - Agent Re-execution
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Module 1: Goal Interpretation

Knowledge-Driven Prompt Design:

* Goal Interpretation: Formalized as minimal end-state synthesis under hard constraints.

* Structured Output: Deterministic JSON with three lists: node goals, edge goals, and action goals.

* Relation-First Modeling: Prioritizes containment and placement tasks.

» State-Action Separation: Prefers state goals for device control; uses action goals only when necessary.

* Minimization Principle: Removes intermediate states and contradictions to improve executability.

*  Outcome: Compact, simulator-aligned specifications that reduce error propagation and stabilize downstream

evaluation.

LLMs as

i Goal State Goal Interpretation F;
Goal Interpretation
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Rule-Centric Agent Design:

* Generator + Corrector: Combines initial prediction with reflective feedback and temporal logic.

* Correction Process: Uses original goal, previous output, and reference examples to produce corrected JSON
and LTL-like formulas.

* Rule Induction: Driven by execution reports and success metrics for consistency with environment
constraints.

* Closed-Loop Refinement: Agent re-executes tasks with injected rules, analyzes outcomes, and iterates.

* Result: Higher success rates, cleaner specifications, and improved semantic alignment.

HMsas & Goalstate —>  EXeeute . WMsas ___ rkRULES —
Goal Interpretation Reports Corrector
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Task2: Subgoal Decomposition
Knowledge-Driven Prompt Design:
* Goal: Generate an executable action sequence transforming initial state s, to target state g.
* Strategy: One-shot autoregressive generation using LLMs; full sequence produced in a single forward pass.
* Inputs:s,, g, and interactable objects O.
* Constraints:
*  Physical: Hand occupancy, free manipulators.
* Temporal: Correct ordering (e.g., open container before placing objects).

* Logical: Action-specific preconditions.

go: Ground Truth LLMs as BFS Searching as Ground Truth Action Trajectory Execution Success Rate
ecomposition Goal Interpretation Subgoal Decomposition Action Sequencing Transition Modeling Final State Task Success Rate



Method LAMDA

Learning And Mining from DatA

Rule-Centric Agent Design:

Output Format: Python-evaluable list of dictionaries; no explanatory text or markdown.

Validation Pipeline:
*  Format Validation: Structural correctness.
* Hallucination Detection: Ensure actions € A, objects € O.
* Argument Validation: Parameter consistency.

Executability Check: Sequential execution via transition model M; detects missing steps, extra steps,

incorrect order, infeasible actions.
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* Common Strengths: High grammatical correctness, strong state goal achievement.
* Differences:
* VirtualHome excels in planning coherence & subgoal decomposition, but struggles with
semantic interpretation & transition modeling.
* BEHAVIOR shows robust semantic reasoning & transition modeling, but weaker in subgoal
decomposition.
* Recommendation:
* Develop environment-adaptive strategies for navigation, semantic abstraction, and action-space
complexity.
* Incorporate rule-based validation and explicit navigation modules to reduce hallucinations and

ordering errors.
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Table 1: Results (%) overview. V: VirtualHome, B: BEHAVIOR..

Average Perf.  Goal Interpretation Action Sequencing Subgoal Decomposition Transition Modeling
Model Overall Perf. Module SR £z Task SR Execution SR Task SR Execution SR /3 Planner SR

14 B V B 1% B vV B Vv B V B Vv B V B
GPT-40 52.25 4941 55.09 249 77.4 68.3 40.0 83.6 500 681 450 851 51.0 431 629 296 53.0
GPT-03 64.43 61.75 67.10 353 79.1 689 646 832 708 743 520 871 573 446 524 924 93.0
GPT-5 68.32 68.09 68.55 36.3 79.2 723 710 849 740 732 540 872 60.0 364 430 863 970
Re' Prompt 74.54 71.58 77.50 49.0 84.9 712 73.0 849 780 747 80.0 88.0 86.6 548 430 914 970
Re” Agent 81.36 76.36 86.35 57.9 85.0 73.5 81.0 849 910 747 80.0 866 88.0 988 99.8 99.9 99.0

We evaluated GPT-series models (GPT-40, GPT-03, GPT-5) using closed-source API calls,
with GPT-5 as the primary planner. Tasks were long-horizon, so the context length was
set to 8192 tokens, and each task allowed up to 5 with reflective summaries to
improve subsequent attempts.

Re' means using only one round of prompt optimization.

10



Conclusion LAMDA

Learning And Mining from DatA

Our work establishes that iterative reflection and rule abstraction are critical for robust embodied
decision making. Evaluated on the Embodied Agent Interface benchmark, our Re? agent achieves a
combined score of 81.36 (86.35 on BEHAVIOR, 76.36 on VirtualHome), significantly outperforming
non-iterative baselines and demonstrating effective closing of the gap between language

understanding and grounded action execution.

Looking ahead, we aim to build upon the Re? agent framework by collecting more environmental
interaction data, thereby truly integrating the learning capabilities of LLMs with dynamic feedback

from embodied scenarios to achieve closed-loop responsiveness in open-world settings.

11



LAVIDA

Learning And Mining from DatA

Thanks for your listening!

Presented by Yang Chen
2025-12-07
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