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Overview of the solution by Team SingaX

Areas we aim to tackle

- Prompt optimization — Generate better output

- Inference generation — Generate output candidates

- Output verification — Iterate/select best output



- LLM explicitly express confusion

- “Conflicting” ambiguity

Our observation: ambiguity in prompts causes confusion in 
LLM reasoning



We should reduce the ambiguity in prompts, but how?
- Manual approach: identifying common errors from logs

.Extremely time and effort intensive.



Preliminary idea: one automated way is… asking LLMs to do this 

- GPT-5 agent on VS-Code 
Co-pilot extension

- “Look through the whole 
JSON file, and summarize 
the key mistakes made by 
the LLM generation for the 
tasks.”

- Attach log file

- Long context window: 
ingest entire log file



- “Improve the prompts 
to address the issues”

- Attach prompt file

- LLM agent directly 
applies patch to the 
system prompt file

- Distinct from existing 
prompt optimization 
works (e.g., [1,2]), we 
directly use the verifier 
logs as feedback 
during the prompt 
improvement step

Prompt Induction: Learning from History or Mistakes ⇒ Better Instructions

[1] Zhou et. al. (2023). Large language models are human-level prompt engineers. In Proc ICLR.
[2] Guo et. al. (2025). Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt optimizers. arXiv:2309.08532.



Overall pipeline of Iterative Prompt Induction (Development phase)

1. Use initial system prompt and 
generate initial LLM outputs

2. Pass LLM outputs through 
verifier

3. Put all verifier logs in-context 
into LLM, and ask LLM to 
improve system prompt

4. Repeat step 1 onwards with 
new system prompt (as 
required)



Overall pipeline (Test phase) — When verifier is not available

1. Use improved system prompt 
and generate LLM outputs

2. Pass LLM outputs through 
verifier

3. Put all verifier logs in-context 
into LLM, and ask LLM to 
improve system prompt

4. Repeat step 1 onwards with 
new system prompt (as 
required)



Evaluate on actual large LLM: Clear improvements 
across the board

+  2.6
+  8.0
+  5.0
+16.6
+12.4

+17.5
+  2.4
+11.1
+33.7
+22.9



Improved prompts also work well on small LLMs



Main changes in improved prompts 
via our interactive induction

- Rules and checklist
- Templates for common tasks

However, LLMs can still hallucinate 
and make mistakes

- Double check templates for correctness
- Add in a few more rules
- Minimal manual effort, as LLM has already 

done the bulk of the work



Further improvements (Test set)



Key strength — Cost effective
- Training-free
- Only require 1 round of query using dev set
- Qwen3-235B-Thinking total cost: 3.75 USD in dev phase, and 17.41 USD in test phase.





Remaining performance gap in behavior env

- Some problems have specific 
ground truth

- Cannot be resolved without 
overfitting to specific problems



Other stuff we tried



Prompt Optimization

We optimize the prompts used for each task in the following manner:

1. Use the LLM to generate 200 different possible prompt candidates (candidate 
pool) from the original prompts given by the organizer.

2. Project each prompt into a latent semantic embedding space using an 
off-the-shelf embedding model.

3. Apply Bayesian Optimization (BO) over the prompt candidates:
a. Progressively estimates the approximate performance landscape and 

retrieves the prompt that has the best performance estimate from this 
landscape.

4. Yields approximately 4-5% improvements. Prompt candidate A
Prompt candidate B
…



Critic Best-of-N (Critic BoN) Framework

1. Generation Phase: 

Given the initial query, 
the generator model 
produces N candidate 
outputs.



Critic Best-of-N (Critic BoN) Framework

2. Critic Phase: 

A Critic Agent checks 
every candidate 
against a predefined 
checklist and outputs 
any identified issues.



Critic Best-of-N (Critic BoN) Framework

3. Decision Logic: 

(a) If a candidate has 
zero issues, it is 
accepted as the 
final output.

(b) If all candidates 
contain errors, the 
framework defaults 
to the Best-of-N 
strategy.



Critic Best-of-N (Critic BoN) Framework

4. Refinement Loop: 

The selected candidate 
and its corresponding 
critique are provided to 
the generator model, 
which then iteratively 
refines its output based 
on this feedback.



Multi-Model Best-of-N at Test Time

● Baseline BoN: Sample N answers from 
one LLM and let a verifier pick the best.

● Multi-Model BoN: For each question, 
query three heterogeneous LLMs 
(Qwen, GPT, Gemini) and treat their 
outputs as N=3 candidates.

● Verifier selection: An LLM verifier scores 
candidates on JSON format, constraint 
satisfaction, and task quality, then 
selects the best answer.

● Benefit: Better robustness and accuracy 
from model diversity, with no extra 
training.

Question

GeminiGPTQwen

LLM
Verifier



Thank you for your time!


