
EAI Challenge in NeurIPS 2025
Team SingaX

Team members:
Xinyuan Niu, Zhiliang Chen, Vernon Yan Han Toh,
Yanchao Li, Zhengyuan Liu, Nancy F. Chen

Our Team

Xinyuan Niu
National University of Singapore

Zhiliang Chen
National University of Singapore

Vernon Yan Han Toh
Nanyang Technological University,

Singapore

Yanchao Li
Nanyang Technological University,

Singapore

Zhengyuan Liu
Agency for Science, Technology and Research

(A*STAR), Singapore

Nancy F. Chen
Agency for Science, Technology and Research

(A*STAR), Singapore

Overview of the solution by Team SingaX

Areas we aim to tackle

- Prompt optimization — Generate better output

- Inference generation — Generate output candidates

- Output verification — Iterate/select best output

- LLM explicitly express confusion

- “Conflicting” ambiguity

Our observation: ambiguity in prompts causes confusion in
LLM reasoning

We should reduce the ambiguity in prompts, but how?
- Manual approach: identifying common errors from logs

.Extremely time and effort intensive.

Preliminary idea: one automated way is… asking LLMs to do this

- GPT-5 agent on VS-Code
Co-pilot extension

- “Look through the whole
JSON file, and summarize
the key mistakes made by
the LLM generation for the
tasks.”

- Attach log file

- Long context window:
ingest entire log file

- “Improve the prompts
to address the issues”

- Attach prompt file

- LLM agent directly
applies patch to the
system prompt file

- Distinct from existing
prompt optimization
works (e.g., [1,2]), we
directly use the verifier
logs as feedback
during the prompt
improvement step

Prompt Induction: Learning from History or Mistakes ⇒ Better Instructions

[1] Zhou et. al. (2023). Large language models are human-level prompt engineers. In Proc ICLR.
[2] Guo et. al. (2025). Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt optimizers. arXiv:2309.08532.

Overall pipeline of Iterative Prompt Induction (Development phase)

1. Use initial system prompt and
generate initial LLM outputs

2. Pass LLM outputs through
verifier

3. Put all verifier logs in-context
into LLM, and ask LLM to
improve system prompt

4. Repeat step 1 onwards with
new system prompt (as
required)

Overall pipeline (Test phase) — When verifier is not available

1. Use improved system prompt
and generate LLM outputs

2. Pass LLM outputs through
verifier

3. Put all verifier logs in-context
into LLM, and ask LLM to
improve system prompt

4. Repeat step 1 onwards with
new system prompt (as
required)

Evaluate on actual large LLM: Clear improvements
across the board

+ 2.6
+ 8.0
+ 5.0
+16.6
+12.4

+17.5
+ 2.4
+11.1
+33.7
+22.9

Improved prompts also work well on small LLMs

Main changes in improved prompts
via our interactive induction

- Rules and checklist
- Templates for common tasks

However, LLMs can still hallucinate
and make mistakes

- Double check templates for correctness
- Add in a few more rules
- Minimal manual effort, as LLM has already

done the bulk of the work

Further improvements (Test set)

Key strength — Cost effective
- Training-free
- Only require 1 round of query using dev set
- Qwen3-235B-Thinking total cost: 3.75 USD in dev phase, and 17.41 USD in test phase.

Remaining performance gap in behavior env

- Some problems have specific
ground truth

- Cannot be resolved without
overfitting to specific problems

Other stuff we tried

Prompt Optimization

We optimize the prompts used for each task in the following manner:

1. Use the LLM to generate 200 different possible prompt candidates (candidate
pool) from the original prompts given by the organizer.

2. Project each prompt into a latent semantic embedding space using an
off-the-shelf embedding model.

3. Apply Bayesian Optimization (BO) over the prompt candidates:
a. Progressively estimates the approximate performance landscape and

retrieves the prompt that has the best performance estimate from this
landscape.

4. Yields approximately 4-5% improvements. Prompt candidate A
Prompt candidate B
…

Critic Best-of-N (Critic BoN) Framework

1. Generation Phase:

Given the initial query,
the generator model
produces N candidate
outputs.

Critic Best-of-N (Critic BoN) Framework

2. Critic Phase:

A Critic Agent checks
every candidate
against a predefined
checklist and outputs
any identified issues.

Critic Best-of-N (Critic BoN) Framework

3. Decision Logic:

(a) If a candidate has
zero issues, it is
accepted as the
final output.

(b) If all candidates
contain errors, the
framework defaults
to the Best-of-N
strategy.

Critic Best-of-N (Critic BoN) Framework

4. Refinement Loop:

The selected candidate
and its corresponding
critique are provided to
the generator model,
which then iteratively
refines its output based
on this feedback.

Multi-Model Best-of-N at Test Time

● Baseline BoN: Sample N answers from
one LLM and let a verifier pick the best.

● Multi-Model BoN: For each question,
query three heterogeneous LLMs
(Qwen, GPT, Gemini) and treat their
outputs as N=3 candidates.

● Verifier selection: An LLM verifier scores
candidates on JSON format, constraint
satisfaction, and task quality, then
selects the best answer.

● Benefit: Better robustness and accuracy
from model diversity, with no extra
training.

Question

GeminiGPTQwen

LLM
Verifier

Thank you for your time!

