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Overview of the solution by Team SingaX

Areas we aim to tackle

- | Prompt optimization — Generate better output

- Inference generation — Generate output candidates

- Output verification — Iterate/select best output



Our observation: ambiguity in prompts causes confusion in

LLM reasoning

- LLM explicitly express confusion

But in the OPEN description, it says "toggle off the target object first if want to open it"™ - this is confusing.

- “Conflicting” ambiguity

However, the problem says: "Do not output redundant states." and "A redundant
state means a state that is either not necessary or has been satisfied before
without broken."

But note: the initial state has the fruits inside the fridge. To get them on
the countertop, we must:
- Open the fridge (if it's closed) -> but the initial state doesn't say the
fridge is closed? Actually, the state "open(fridge.97)" is not given, so
it's initially closed? The rule says: if we want to take an object out of a
container that is openable and not open, we must open it first.

1. Both fruits on countertop: we take them out of the fridge (without
explicitly stating the fridge opening, but it's implied as a necessary action
that we don't list as a state because it's transient? or because the fridge

state is not part of the goal and we don't care after taking the fruits out).

‘error_info': ['fridge 97 is closed, open first']




We should reduce the ambiguity in prompts, but how?

- Manual approach: identifying common errors from logs

15

Experiments with

Qwen/Qwen3-235B-A228-

Thinking-2507

Technically also correct?

Does not know stained require sink

behavior, greedy sampling

Extra conditions

goal_interpretation

Intermediatory steps

10

Ambiguous goal? (5)

Ambiguous goals? Ambiguous goals?

Intermecatory steps (requires all soaked?)

Transition modelling

Extranaous gold nodogoal Is switch on roquired? (8)

Ambiguous evaluation? Wrongaction

wded in prompt (does not know
o)

Evaluation error?

virtualhome, greedy sampling

Doosn't make sense??? (9)




Preliminary idea: one automated way is... asking LLMs to do this

Look through the whole JSON file, and summarize the key mistakes made by the LLM generation for the tasks.

{} behavior_goal_interpretation_detailed_an rocessed.json = behavior_goal_interpretation.txt

- GPT-5 agent on VS-Code
Co-pilot extension

I'll jot a tiny TODO to structure the summary, then deliver it.

(11
- “Look through the whole
Here's a compact synthesis of the recurring mistakes | see across tasks:
J S O N fi I e ’ a n d summarize Bold relation misuse: Choosing the wrong relation type, e.g., using inside with surfaces/fumiture or people (e.g., “inside candle table/sofa” in Putting up

Christmas decorations inside; “inside scrub_brush shelf” in Cleaning the pool).
Bold subject-object inversion: Reversing edge direction, e.g,, ["under”, "table", "printer"] instead of printer under table; similar inversions for boxes,

the key mistakes made by |msa—""

Bold surface vs container confusion: Placing items directly on the table instead of in/onto dishes or trays (Serving a meal predicted food ontop table);

th e L L M e n e rati O n fo r th e putting candles “onfloor ... table” (nonsensical).
g Bold overuse of cleanliness states: Frequent spurious unary goals like ["not”, [“dusty”/"stained", ...]] across many scenes (cleaning table, oven,

plates, floors, shoes) even when not required.
taS kS . » Bold unwarranted negations and closures: Predicting ["not", ["open”, ...]1] for bags/boxes/jars or negated onfloor /other edges not demanded by
the goal (packing child’s bag, moving boxes, installing printer).
Bold over-specification of contents: Asserting specific items and destinations beyond instructions (Sorting groceries predicting exact oranges in fridge;
. adding “book” in Easter basket; plates inside cartons in garage organization).
- AttaCh Iog fl |e Bold unrealistic stacking/chaining: Long under stacks (envelopes/newspapers chains in Sorting mail) that are unlikely or irrelevant to success criteria.
Bold quantity/scope mismatches: Missing or adding extra instances; overcovering all similar objects with uniform constraints (e.g., every plate “not dusty” in}
Putting dishes away).
Bold post-action placement errors: After cleaning/using tools, placing them oddly (scrub brush inside shelf; setting mousetrap “onfloor” in wrong context).

- LO n g CO ntext WI n d OW " Bold device state/placement inconsistencies: Toggling on/off and “under/ontop” device placements inconsistently; sometimes correct (fax/modem/scanner]

other times inverted or unnecessary.

Bold temporal/process conflation: Mixing intermediate and final states (e.g., predicting jars “not open” while also newly placing fruit inside; slicing/cooking

i n g est e nti re I Og fi | e states overasserted in preserving/bottling tasks).

Bold schema drift: Heavy use of ontop in outputs while the prompt’s allowed edge set omits “OnTop” (yet examples include it), inviting inconsistent

generations.




Prompt Induction: Learning from History or Mistakes = Better Instructions

= “ I m p rove th e p ro m ptS Improve the prompt to address the issues
to address the issues”

- Attach prompt file

Next, I'll patch the prompt to add guardrails and fix the schema.

behavior_goal_interpretation.txt

- LLM agent directly
applies patch to the
Sy St em p rom pt .I:I I e updated the prompt to fix schema and add guardrails.

Bold schema/casing: Standardized to lower-case tokens for all states and relations; added ontop to the allowed relation set; tightened JSON shape to
exactly {"node goals”: [...], "edge goals": [...]} with lists only.

- D iSti n Ct fro m eXiSti n g Bold allowed sets: Node states now restricted to {"cooked", "open”, "frozen","dusty”, "stained"”,"sliced", "soaked", "toggled on"}; edge relations to

"onfloor”, "ontop"”, "touching”, "under”}; not wrapper required for negations.

pr0| I l pt o ptl I I I Izatlon Bold semantics rules: Clear constraints for inside (containers only), ontop (support surfaces), onfloor (floor only), under directionality, and symmetry of

nextto / touching . Prevents subject-object inversions and surface/container confusions.

WO rkS (e g [ 1 2] ) We Bold minimality: Explicitly forbid speculative cleanliness/open/negated states unless the task demands them; discourage blanket assertions and unrealistic
" ") ) Y

stacks; require matching counts and plausible placements.

d i re Ctly u Se th e Ve rifi e r Bold validation checklist: Deduplication, no invented objects/IDs, final states only (not intermediate steps).
Bold examples: Tiny snippets to disambiguate printer-under-table, serving on dishes, and jars without forced closure.
| Og S aS feed baCk File changed: = behavior_goal_interpretation.txt
d u ri n g th e p ro m pt Want me to regenerate prompts or run a small batch to sanity-check reductions in false positives (e.g., serving, sorting mail, installing printer)?

improvement step

[1] Zhou et. al. (2023). Large language models are human-level prompt engineers. In Proc ICLR.
[2] Guo et. al. (2025). Evoprompt: Connecting lims with evolutionary algorithms yields powerful prompt optimizers. arXiv:2309.08532.



Overall pipeline of Iterative Prompt Induction (Development phase)

1. Use initial system promptand

generate initial LLM outputs ( LLMinference SRR
; Query N

2. Pass LLM outputs through

verifier ‘ c@‘m_’ Output 1
\ : : Output N ,‘
3. Put all verifier logs in-context S N B /
into LLM, and ask LLM to
improve system prompt ' Promptimprovement @ """

4. Repeat step 1 onwards with
new system prompt (as |
required)

Verification log 1 M
Verificaiion log N

______




Overall pipeline (Test phase) — When verifier is not available

1. Use improved system prompt e ]
and generate LLM outputs

/ LLM inference Query 1

Ve'H"Fl'e'F. . i System @ Output 1

prompt Output N

|
|
|
|
|
\

\ /

" g " N K

pJ ’

S e
Ll




Evaluate on actual large LLM: Clear improvements

across the board

behavior virtualhome
dev set dev set
Default  Ours Default  Ours
prompt prompt

goal_interpretation (f1) 79.7 823 + 2.6 43.6 61.1 | +17.5
subgoal_decomposition (task sr) 69.0 770 + 8.0 90.5 929 | + 24
action_sequencing (task sr) 79.0 84.0 + 5.0 65.9 77.0 | +11.1
transition_modeling (f1) 67.9 84.5 +16.6 47.3 81.0 | +33.7
transition_modeling (sr) 86.0 98.4 +12.4 75.0 97.9 | +22.9

avg_perf 76.2 83.7 65.3 80.1




Improved prompts also work well on small LLMs

Table 2: Overview of results (%) on the evaluation phase. V: VirtualHome, B: BEHAVIOR.

Goal Interpretation

Action Sequencing

Subgoal Decomposition

Transition Modeling

Average Perf.

Fy TaskSR FEzxecSR TaskSR FxecSR F PlannerSR  ModuleSR OQverall Perf.

Model 1% B 1% B 1% B % B 1% B v B Vv B % B
Qwen 3 4B 23.9 39.7 584 39.0 67.0 56.0 549 430 79.1 540 303 359 435 46.0 43.53 40.66 42.09
(+ Optimized Prompt) 38.6 30.6 63.7 410 746 51.0 557 550 798 70.0 688 52.0 47.0 70.0 53.98 46.90 50.44
¢+ 14.7) A49.1 *+53) (120) (17.6) (1500 (108) (11200 (107) (1160) (1385 *t16.1) (13.5) (124.0) (+104) (16.2) (184
Qwen 3 8B 23.4 69.7 584 440 69.5 580 589 40.0 813 50.0 383 537 802 73.0 4999 54.26 52.13
(+ Optimized Prompt) 39.5 73.3 679 56.0 80.7 650 61.1 56.0 827 700 810 637 925 91.0 63.81 65.66 64.74
(1 16.1) (13.6) (195) (112.0) 1112) (17.0) 122) (1160) (+14) (1200) (1427 (110.0) (+123) (1180) (113.8) (+114)  (112.6)
Qwen 3 14B 24.8 71.0 66.0 46.0 82.1 58.0 625 450 821 530 430 596 635 440 51.64 53.45 52.54
(+ Optimized Prompt) 41.5 73.0 655 57.0 809 650 663 660 866 780 799 646 824 830 63.61 6745 65.53
*16.7) *2.0) (105 (111.0) (1 12) (17.0) (138) (121.0) (145 (12500 (1369 (150) (1189 (139.0) (112.0) (+140)  (113.0)
Qwen 3 32B 28.0 65.5 632 59.0 773 71.0 659 47.0 863 550 454 625 762 78.0 5448 60.44 57.46
(+ Optimized Prompt) 39.4 68.5 674 630 81.1 720 663 660 857 790 782 683 844 89.0 63.60 69.04 66.32
(*+11.4) *3.0) (142) (140) (138) (11.0) (104) (1190) (0.6) (1240) (1328) (158 (182) (+11.0) (19.1) (18.6) (18.9)
Qwen 3 30B A3B 26.80 79.10 69.30 53.00 81.50 68.00 61.10 56.00 83.90 66.00 36.70 49.70 82.10 69.00 54.15 61.86 58.01
(+ Optimized Prompt) 42.80 69.70 70.00 54.00 83.60 65.00 64.30 73.00 86.10 88.00 75.60 61.50 92.60 88.00 65.30 67.86 66.58
(1 16.00) (1 9.40) (1 0.70) (11.00) (12.10) ({3.00) (13.20) (1 17.00) (12.20) (1 22.00) (138.90) (1 11.80) (1 10.50) (1 19.00) (1 11.15) (1 6.00) (1 8.6)




Main changes in improved prompts
via our interactive induction

- Rules and checklist
- Templates for common tasks

However, LLMs can still hallucinate
and make mistakes

- Double check templates for correctness

- Add in a few more rules

- Minimal manual effort, as LLM has already
done the bulk of the work




Further improvements (Test set)

behavior virtualhome
dey/test set dev set test set

Default |Ours Ours Default Ours || Ours Ours

prompt + edits| | prompt + edits
goal_interpretation (f1) 090 82.3 86.2 43.6 61.1 []146.5 64.5
subgoal_decomposition (task sr) 69.0 77.0 79.0 90.5 92.9 ||72.6 79.3
action_sequencing (task sr) 79.0 84.0 85.0 65.9 77.0 []170.8 92.0
transition_modeling (f1) 67.9 84.5 98.9 47.3 81.0 (196.0 99.5
transition_modeling (sr) 86.0 98.4 99.0 9.0 97.9 [198.5 99.9
avg_perf 76.2 83.7 87.3 65.3 80.1 []71.8 81.4




Key strength — Cost effective

- Training-free
- Only require 1 round of query using dev set
- Qwen3-235B-Thinking total cost: 3.75 USD in dev phase, and 17.41 USD in test phase.

Environment Task Dev set Test set
Mean token length | Cost for | Mean token length | Cost for
Prompt  Output | task ($) | Prompt  Output | task ($)
behavior goal_interpretation 1216 5717 0.36 2119 5229 0.35
subgoal_decomposition 2657 12014 .73 3683 8851 0.58
action_sequencing 3415 8188 0.53 3701 7298 0.50
transition_modeling 3414 10399 0.66 3660 8352 0.57
virtualhome  goal_interpretation 1874 7706 165 2994 3313 5.46
subgoal_decomposition 3056 1225 1.58 3571 8386 8.14
action_sequencing 2256 5264 1.16 3336 5777 5.75
transition_modeling 3635 9902 1.88 5398 8681 8.70

Total cost | | 375 | 1741
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Remaining performance gap in behavior env

Relevant objects in the scene are:
gym_shoe.n.@1_1: ['Stained’, 'Dusty’]

Some problems have Specrﬁc necklace.n.®1 1: ['Stained', 'Dusty']

notebook.n.91_1: ['Dusty’]

ground truth sock.n.01 1: ['Stained’, 'Dusty’]

sock.n.01_2: ['Stained’', 'Dusty']

Cannot be resolved without table.n.02_1:| [ 'Stained", ‘Dusty’]

table.n.92 2: ['Stained’, 'Dusty’]
Overflttlng to SpeCIfIC problems cabinet.n.@1_1: ['Stained', 'Open', 'Dusty']

sofa.n.01_1: ['Stained’', 'Dusty’]
floor.n.01_1: ['Stained’', 'Dusty’]
floor.n.01_2: ['Stained’', 'Dusty’]

"all _unsatisfied conditions"]

All initial states in the scene are:
[*under', 'gym shoe.n.91_1', 'table.n.02 1']
[‘onfloor', ‘gym shoe.n.091_1', ‘floor.n.01 2']
[*inside®', 'necklace.n.91_1"', ‘cabinet.n.01_1']
[‘under®', ‘notebook.n.91_1°', ‘table.n.02 2']
[‘ontop', 'sock.n.91_1', 'sofa.n.01_1°]
[*onfloor®', ‘sock.n.01_2', ‘floor.n.01 1']
[*onfloor', ‘agent.n.01_1', 'floor.n.01_1']

[['ontop', ‘gym shoe.n.01_1', 'table.n.02 2'],
[‘ontop®, ‘necklace.n.@1_1', "table.n.02 2'],
[‘ontop®, ‘notebook.n.@1_1°', "table.n.02 2'],
['ontop®, "sock.n.@1_1', "table.n.02 2'],
[‘ontop®, ‘sock.n.01_2', "table.n.02 2']]

"false_positive_conditions"]

Task Name and Goal Instructions:

{

‘ontop’, ‘gym shoe.n.01_1', 'table.n.02 1'],
‘ontop', ‘'necklace.n.01_1°', ‘table.n.02 1'],
‘ontop', 'notebook.n.01_1°', ‘table.n.02 1'],
‘ontop’, 'sock.n.91_1', ‘table.n.02 1°],
'sock.n.01_2', "table.n.02 1']]

"Task Name": "collect _misplaced items",

"Goal Instructions”: "Collect all misplaced items including the
gym shoe, necklace, notebook, and socks. Then place them on the
table."

}

(- p—p— p— p—



Other stuff we tried



Prompt Optimization

We optimize the prompts used for each task in the following manner:

1.

2.

Use the LLM to generate 200 different possible prompt candidates (candidate
pool) from the original prompts given by the organizer.

Project each prompt into a latent semantic embedding space using an
off-the-shelf embedding model.

Apply Bayesian Optimization (BO) over the prompt candidates:

a. Progressively estimates the approximate performance landscape and
retrieves the prompt that has the best performance estimate from this
landscape.

Yields approximately 4-5% improvements. Prompt candidate A ——Tﬁ J

Prompt candidate B \FJ A



Critic Best-of-N (Critic BoN) Framework

[ Initial Query (q) ]

\ 4

Generator Model

Produces N Candidates
{01) 025 .ees on}

1. Generation Phase:

Given the initial query,
the generator model
produces N candidate
outputs.



Critic Best-of-N (Critic BoN) Framework

[ Initial Query (q) ] S?II;IT:II'?Il:ify 2. Critic Phase:
L A Critic Agent checks
\ 4 .
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> e against a predefined
N> . fssues :
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(01,02, 0} - any identified issues.
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Critic Best-of-N (Critic BoN) Framework

3. Decision Logic:

[ Initial Query (q) ] Scill;:ﬂ:?y
it Issues List :
B o, loouee (a) If a candidate has

Zero issues, it is
accepted as the
S, ] final output.
(b) If all candidates
oSesam |, oo ](c:ontain errors, the
{ Best-of-N Selection Strategy J ramework defaults

\ 4
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Critic Best-of-N (Critic BoN) Framework

[ Initial Query (q) ]
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Iterative Refinement
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Final Output

4. Refinement Loop:

The selected candidate
and its corresponding
critique are provided to
the generator model,
which then iteratively
refines its output based
on this feedback.



Multi-Model Best-of-N at Test Time

Question

Qwen GPT [ Gemini ]

LLM
Verifier

Baseline BoN: Sample N answers from
one LLM and let a verifier pick the best.
Multi-Model BoN: For each question,
query three heterogeneous LLMs
(Qwen, GPT, Gemini) and treat their
outputs as N=3 candidates.

Verifier selection: An LLM verifier scores
candidates on JSON format, constraint
satisfaction, and task quality, then
selects the best answer.

Benefit: Better robustness and accuracy
from model diversity, with no extra
training.



Thank you for your time!



